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i_. DYNAMICS -OF MECHANICAL FEEDBACK-TYPE HYDRAULIC SERVOMOTORS 
UNDER INERTIA LOADS l 

By HAROLD GOLD, EDWARD W. OTTO, and VICTOR L. RANSOM 

SUMMARY 

An analysis of the dynamics of mechanical feedback-type 
hydraulic servomotors under inertia loads is developed and exper- 

The basic technique employed in this paper in the analysis 
of the servomotor is the approximation by one or more linear 
systems whose individual responses match the behavior of 

The 
imental veri$cation is presented. This analysis, which is de- 

the actual system in definable phases of the response. 

veloped in terms of two physical param,eters, yields direct expres- 
several linear systems are then correlated by relating each to 

sions for the following dynamic responses: (1) the transient 
the same physical parameters of the system. In this in- 

response to a step input and the maximum cylinder pressure 
stance, two parameters are all that are required for the cor- 

during the transient and (2) the variation of amplitude attenua- 
relations. One of these parameters is a direct function of 

tion and phase shift with the frequency of a sin.usoidally varying 
the dimensions of the srrvomotor and the hydraulic pressure 

input. The validity of the a.nalysis is demonstrated by means 
drop across the motor. The second parameter is a function 

of recorded transient and frequency responses obtained on two 
of the magnitude of the disturbance and the mass of the load. 

servomotors. These data, which were obtained over a wide range 
By means of this method, analytical expressions arc obtained 

of inertia loads, input magnitudes, and pressure diferentials, are 
for the following dynamic responses of the servomotor: (1) 

presented along with the analytically determined responses. In 
the transient response to a step input and the maximum 

all cases the calculated responses are in close agreement with the 
cylinder pressure during the transient and (2) the variation 

measured responses. The relations presented are readily appli- 
of amplitude attenuat.ion and phase shift with the frequency 

cable to the design as well as to the analysis of hydraulic servo- 
of a sinusoidally varying input. 

motors. 
The validity of the analysis is demonstrated by means of 

recorded transient and frequency responses that were ob- 

INTRODUCTION tamed on both a straight-line and a rotary type of servo- 
motor. These data, which were obtained over a wide range 

The servomotor dealt with in this paper is a pomrr- of inertia loads, input magnitude, and pressure differential, 
amplifying, positioning device of the type used in such applica- are prcscntcd along with the analytically determined re- 
tions as control-valve positioners , gun-turret positioners, flight sponses. The investigation was conducted at the NACA 
controls, and power-steering devices. The hydraulic servo- Lewis laboratory. 
motor as a device has been known for approximately 100 SYMBOLS 

years. Its application to high-speed machinery, however, 
appears to be relatively recent. There is, consequently, vrry 

The following symbols are used in this analysis: 

little published literature on the dynamics of this servomotor 
A ratio of output amplitude at a given frequency to 

in spite of its long history. Nevertheless, when properly de- 
output amplitude at zero frequency 

signed, the hydraulic servomotor is particularly suited for A, piston area, sq in. 

high-speed service because of the extremely high force-mass A, open area of pilot valve (inlet or discharge side), 

ratios that can be obtained and because the device inherently 
sq in. 

is heavily damped. 
a constant 

A differential equation for the response to a step input of b constant 

the hydraulic servomotor with mechanical feedback under an c dimensional constant in fluid-flow equation 
inertia load is available in the literature (ref. 1). This equa- 
tion (a foim of which is derived in the present paper) can be 95.1- sq ‘“I based on specific gravity of 0.851 

considered to be exact over a fairly representative portion of 
see ,/lb \ 

the response but is not valid in the early part of the transient. and flow coefficient of 0.59 
J 

Furthermore, under a heavy inertia load the fluid on the 
driving side of the piston may cavitate, in which case the L 

constant 
constant 

response cannot be described by a single equation. It is E inertia index (transient response) 
therefore necessary to treat the response of the servomotor E’ inertia index (frequency response) 
in distinct phases. F,F1,Fz functions 
--- 
, 1 Supersedes NAC-4 TN 2707, “Dynamics of Mechanical Feedback-Type Hydraulic Servomotors Under Inertia Loads” by Harold Cold, Edward IV. Otto, end Victor L. Ransom, 1952. 
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low-frequency-band break frequency, cps 
high-frequency-band break frequency, cps 
cross-over frequency, cps 
constant 
width of vane, in. 

J-1 
polar moment of inertia, (lb-in.) (sec2)/radians 
inner vane radius of rotary servomotor, in. 
outer vane radius of rotary servomotor, in. 
load mass, (lb) (se?‘)/in. 
upstream cylinder pressure, lb/sq in. abs 
downstream cylinder pressure, lb/sq in. abs 
drain pressure, lb/sq in. abs 
supply pressure, lb/sq in. abs 
pressure drop across piston, lb/sq in. 
valve pressure drop, lb/sq in. 
discharge-valve pressure drop, lb/sq in. 
inlet-valve pressure drop, lb/sq in. 
shaft torque, lb-in. 
flow through valve, cu in./sec: 
ratio of valve travel to piston travel at fised input,, 

in./in. 
ratio of valve travel to vane sha,ft. rota,tion n.t 

fixed input, in./radians 
magnitude of step (measured at output), in. 
amplitude of output sine wave at zrro frequency, 

in. 
no-load time constant, set 
time from start of transient, set 
value of t at inflection point of transient, see 
value of t at phase limits in transient, set 
width of valve port (measured perpendicular to 

line of valve travel), in. B 
instantaneous position of output measuretl from 

position at t=O, in. 
value of x a,t inflection point of t.ransicnt r(3ponsc~, 

in. 
value of x at phase limits in transic~ut,, in. 
value of x at point of masimunr tlc~leratiou it) 

t,ransient response, in. 
instantaneous posit.ion of oilt.put, ~mn.s~~~~~tl fmn 

position at t=O, radians 
magnitude of step (measured at output), radians 
am.plitude of output sine wave at zero frequency, 

radians 
phase shift, radians 
angular frrqucncj-, ratlians/scbc: 
low-frequency-band break frequency, radians&c 
high-frequency-band break frequency, radianslscc 
cross-over frequency, radianslsec 

DEFINITIONS AND INITIAL ASSUMPTIONS 

Straight-line servomotor.-The elements of the straight- 
line hydraulic servomotor are shown schematically in figure 
l(a). In the neutral position, the spool member of the pilot 
valve closes the passages to the piston. When the spool 
member is displaced from the neutral position by movement 
of the input lever at point A, the flow of fluid through the 

LJ Output shaft 

(a) 

/---Error --+ 

(a) Sl.raighl.-line sc~wo~nol or. 
(I)) 1Lotar.v servon~olo~. 

FIGURE I.-Schcrnatic drawings of t.wo types of hydraulic servomot,ol 
with mechanical feedback. 

pilot valve causes tlic piston to move in the dircct,ion which 
returns the spool to the neutral posit.ion. It follows from 
the gromctry of the linkago that for cvcry position of the 
linkage point A there is a corresponding equilibrium position 
of the piston. The description of several other forms of 
pilot valving and faedback linkage is available in the 
!iterature. 

Rotary servomotor.-The rotary servomotor is shown 
schematically in figure 1 (b) . Rotation of the pilot valve 
with respect to the output shaft opens a pressure passage to 
me side of the vane and a drain passage to the opposite side 
)f the vane. The vane is thereby caused to rotate in the 
same direction as the pilot valve. In the neutral position 
)f the valve the passages to either side of the vano are closed. 
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Initial assumptions.-The analysis which follows is relation 
developed with the following initial assumptions: 

(1) The area of opening of the pilot valve varies linearly 
lvith the motion of the loacl. 

(2) At all positions of the pilot valve the inlet and dis- 
charge openings are equal. 

(3) At fixed input, the ratio of pilot-valve travel to piston 
travellis constant. 

(4) The supply and drain pressures- are.constant. 
(5) Structure and linkage are rigid. 
(6) The compressibility and mass of the hydraulic fluid 

a.re negligible. 
(7) Mechanical friction forces are negligible. 
(8) Leakage is negligible. 
(9) Fluid friction losses in the motor passages are negligible. 

TRANSIENT RESPONSE TO ‘A STEP INPUT 

The transient response is analyzed for the no-load case as 
well as for the inertia-load case. The analysis of the response 
at no load yields an import,ant parameter used in the analysis 
of the response under an inertia load. 

NO-LOAD RESPONSE 

Basic character of response.- Untlcr the colltlitibns of 
zero load on the output shaft and negligible pist#on and shaft 
mass, the prrssurc drop across the piston will bcr zero during 
lhe transient as well as in steacly state. In the transient 
state, therefore, the fluid flow through the cylinder is essen- 
tially unobstructed. On the basis of the initial assumptions 
ancl on the further assumption of constant flow coefficient 
of the pilot valve, the flow of fluid is then proportional to the 
valve opening and hence proportional to the position error 
of the piston. The velocity of the piston is therefore pro- 
portional to the error. This relation bctwccn the piston 
velocity and the error may bc c~sprcsscd by Lhc following 
equation: 

Tk=(S-32) 

‘l’hc solution of equation (1) is: 

(1) 

In the no-load case the transient response is therefore 
tlcfined by the time constant T. 

Determination of time constant from servomotor dimen- 
sions (straight-line servomotor).-In the no-load case the 
sum of the pressure drops across the inlet and discharge ports 
is equal to the pressure difference across the servomotor. 
From the initial assumptions it therefore follows that the 
pressure drops across the two valves are the same and hence 
equal to half the pressure difference across the servomotor: 

Ap =ps-pd u 2 (3) 

If the flow coefficient of the pilot valve is considered con- 
st.nnt, the rate of fluid flow into the cylinder is given by the 

q=CA, ps-pd 

2 

3 

The area of opening of the valves is proportional to the 
error and may be written 

A,= (S-x)BW (5) 

The velocity of the piston is determined by the flow rate 
through the valves and is related, by the following expression: 

A,i=q 03) 

Equations (4), (5), and (6) may be combined to form the 
differential equation of the response 

Ap,=(,,W~~) (S---z) 

Equation (7) is of the same form as equation (l), fron 
which it follows that 

T= liz A,..... 
C’Iif w JI’$ - I-‘, 

(8) 

Determination of time constant from motor dimensions 
(rotary servomotor).-The area of opening of the valves as 
a function of the error may be written 

A,=@-a)rW (9) 

The angular velocity of the output shaft may be related 
to the flow rate through the valves by the following espres- 
sion: 

g (L,*--Lly A= y (10) 

Equations (4), (9), and (10) may be combined to form the 
differential equation of the response 

From equation (11) the t8imc constant is 

T= -h w-m 
42 Cr WJPX 

(1% 

Experimental responses--A typical response of’a hydraulic 
servomotor to a step input at no load is presented in figure 2. 
The servomotor used in this run is of the rotary type. The 
data are plotted as the logarithm of the characteristic term 

( > 
1-f 

-1 
against time. In a response described by equation 

(2) (rewritten in terms of Q! and 0), the term log ( > 
1 -f 

-1 

varies linearly with time. The data as shown fall essentially 
along a straight line and are in close agreement with the 
calculated response based on the calculated time constant. 
The calculated response is based on the value of time con- 
stant computed by means of equation (12). The dimensions 
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FIGURE 2.-Response of hydraulic servomotor to strp input under 
negligible inertia load. Rotary servomotor; torque-inertia ratio, 
3,500,OOO radians per second per second; supply pressure, 1000 
pounds per square inch; total shaft displacement, 20”. 

of the servomotor necessary for the application of equation 
(12) are given in appendix A; also described are the experi- 
mental methods used to obtain the data. 

In figure 2 the deviation of the data point,s from the 
theoretical straight line is the greatest in the early part of 
the transient where the effect of the internal servomotor mass 
is greatest. The response in the later part of the transient 
is less affected by the internal mass and is therefore indica- 
tive of the theoretica no-load response. The close agree- 
ment of the p0int.s with the theoretical straight line over 
the entire transient can be attributed to the relatively small 
internal mass of this servomotor. The ratio of static torque 
to the moment of inertia of the motor in this case was 
3,500,OOO radians per second per second. 

TRANSIENT RESPONSE UNDER INERTIA LOAD 

General characteristics of response.-Under the condition 
of an inertia load on the output shaft, the pressure drop 
across the piston will be proportional to the acceleration 
of the load. The general nature of the variation of the 
pressure drop across the piston along with the corresponding 
output shaft response is shown in figure 3. In the figure 
the following relations exist among the cylinder pressures 
P, and Pz and the pressure drops across the piston AP,, 
the inlet valve AP,.,, and the discharge valve AP,,: 

AP,=Pl--Pa 

AP,.r=P,-PI 

APv,d=ps-pd 

In the steady state, the pressure drop across the piston is 
zero. The cylinder pressures are equal and their magnitude 

5 
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FIGURE 3.-Characteristic pressure variations during transient response 
of hydraulic servomotor with mechanical feedback. Step input and 
inert,ia load (cylinder prksures not limited). 

is a function of the leakage areas around the valves. If the 
leakage areas around the valves are equal, the cylinder 
pressures mill be equal to (PS-Pp,)/2. This condition is 
assumed in figure 3. 

In response to a step input, P, immediately rises to the 
supply pressure P,, and P, immediately drops to the drain 
pressure P,(. The accelerating pressure differential is then 
initially (Ps- P,). As the piston accelerates, the flow of 
fluid t,hrough the valve ports increases and at the same 
time the valve-port areas decrease. This action causes P, to 
decrease and Pz to increase. The two curves’ (Pl=F,(t) 
and P2=F2(t)) are mirror images and therefore intersect 
at the value of (Ps-Pp,)/2. At the intersection, the pressure 
differential across the piston is zero and the transient is 
therefore at the inflection point,. Beyond the point of 
intcrscction of the two pressure curves the momentum of 
the load causes P, t’o continue to decrease and Pz to continue 
to increase, which action results in a decelerating pressure 
differential across the piston. The deceleration causes a 
reduction in the rate of fluid flow through the valves and a 
consequent reduction in the rate of change of P, and PZ. 
The pressures Pp and PI therefore pass through maximum 
and minimum values, respect,ively. The deceleration con- 

tinues until the error is reduced to zero. The magnitude 
of the maximum and minimum values of the cylinder pres- 
sures during the deceleration phase is a function of the value 
of error and of momentum at the inflection point. Based 
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on these factors alone, the value of the maximum and mini- 
mum is finite but not limited. The pressure P1, however, 
is physically limited at absolute zero. The effect of P1 
limited at absolute zero is treated in a later section. In 
the analysis that follows, the minimum value of PI is not 
limited. 

In the transient response treated in this section, P, and 
P2 vary as mirror images throughout the entire transient. 
In this-case .. 

APO= AP0.d 

The sum of the valve pressure drops may be written 

AP,,& AP,>,t=2 AP, 

The pressure drop across the piston may be written 

AP,=P,--Pd-2 AP, 03) 

The pressure drop across the piston is related to the ac- 
celeration by the following expression: 

From equations (13) and (14) 

With the flow coefficient of the pilot valve considered con- 
stant, the equation of flow through the valve ports is 

&i=[CRW,/; (Ps-Pd-z i)] (8-x) (16) 

Equation (16) cannot be integrated to z except by numerical 
or graphical mct8hods. Some solutions of equation (16) 
arc given in refcrcuce 1. 

lindcr an incrt,ia load the piston is accclmatecl from zero 
velocity. Thcrc is ronscqucntly an initial period in tllc 
response during which the flow through the valve ports is 
laminar. As a result of this, the flow coeffioicnt of the pilot 
valve is not constant but is subject to wicle variation. The 
net effect of t,hc variation in flow cocfficicnt is that of a 
marked reduction, which results in a slower initial accelera- 
tion rate than is indicated by equation (16). This effect is 
apparent in the comparison between measured responses 
and responses calculated by a form of equation (16) shown 
in reference 1. 

At the conclusion of the transient the piston velocity 
again approaches zero, but in this part of the transient the 
valve areas also approach zero so that high fluid velocity is 
maintained in the valve ports. The flow coefficient may 
therefore be considered constant except in the initial accel- 
eration phase. In the no-load case the assumption of 
constant-flow coefficient is valid because the piston velocity 
is a maximum at the start of the transient. 

In spite of the complex nature of the response there are 
basically only two phases in the transient, the acceleration 
phase ancl the deceleration phase. This conclusion, partic- 
ularly with reference to a continuous deceleration phase 

without overshoot or oscillation, is based on the assump- 
tion of rigid oil and structure and zero leakage. Figure 4 
shows an oscillographic record of the response of a servo- 
motor to a step input under a relatively heavy inertia load. 
The characteristic acceleration phase and dead-beat deceler- 
ation phase are quite clearly demonstrated. 

Time - 

FIGURIG 4.-Oscillographic record of response to step input of 
hydraulic scrvomotor under +n inertia load. 

Linear system for approximation of acceleration phase of 
transient response.-It is indicated by the measured 
responses of hydraulic servomotors under inertia loads that 
the acceleration phase may bc approximated by a linear 
second-,order system. The general form of a second-order 

.cliffercntial equation with constant coefficients may be 
written 

aZ+bi+x=c (17) 

The constants a, b, sncl c are now evnluatcd to match the 
physical system. 

Tho equilibrium vnluc of x in the physical system has 
been defined by the symbol S; hence, 

C=S 

At no load the servomotor responds as a first-order sys- 
tem. Equation (17) should therefore reduce to equation (1) 
for the inertialess case. Therefore, 

b=T 

The constant a can be determined from the initial condi- 
tions : 

x=0 
iJ=o 

;=(psv~J Ap (see fig. 3) 

The substitution of these values in equation (17) yields 

(1% 
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The differential equation of the linear system that approx- 
imates the acceleration phase is then 

(1% 

Evaluation of coefficients for rotary servomotors.-The 
stalled torque of the rof.ary servomotor is given by the follow- 
ing expression : 

Q=(P”-p”) (-b2--h~ h 
2 (20) 

Hence, when 
t=o 

. ..(Ps- Pd) (L22-L2) h 
2J 

The term An/M, which occurs in the case of the straight- 
line servornotor, is replaced in the case of the rotary servo- 
motor by the term h(L22-L12)/2J. Replacing terms in 
equation (18) yields 

2Je 
a=h (La’--:) (Ps- Pa) 

The differential equation of the linear system that approx- 
imates the acceleration phase in the case of the rotary servo- 
motor is 

2Je 
h(L22-L12)(pS-pd) G+T&+a=e 1 (22) 

Linear system for approximation of deceleration phase of 
transient response.-In the deceleration phase of the 
transient the flow through the valve ports is turbulent; con- 
sequently the flow coefficient remains constant and equation 
(16) may be directly applied. 

Rearranging terms of equation (16) and dividing both 
sides by the term. dm yield 

Substituting equation (8) in equation (23) yields 

T(sk)=d~ (24) 

At the- start of the deceleration phase the value of i is 
zero and consequently the right-hand side of equation (24) 
equals unity. As the transient continues, the value of 2 
increases to a m.aximum value and then returns to zero. 
For sm.all inertia loads, the peak deceleration pressure differ- 
ence across the piston will not exceed the value of the term 
(P,-P,) (see fig. 3). In a transient in which the maximum 
decelerating pressure difference across the piston equals the 
difference (Ps-P,), the right-hand side of equation (24) has 
a maximum value of l/z. In even extremely severe tran- 
sients the maximum value of this term will not exceed 2. 
High values of the maximum deceleration are associated with 
short durations. The decelerating pressure differential will 

therefore have a small effect on the integrated solutions. l!‘n 
treating the deceleration phase of the position response of 
the servomotor, therefore, the variation in pressure drop 
across the valve ports may be neglected. Equation (24) may 
therefore be reduced to 

Equation (25) is the same as equation (1). In this linear- 
ization, therefore, the deceleration phase of the transient is 
approximated by an exponential decay. 

Application of equations--Equations (19) and (22), 
which are used in this analysis to approximate the accelera- 
tion phase of the transient, are linear second-order differential 
equations and may be integrated in terms of several parame- 
ters. The no-load time constant T will be employed as a 
parameter in the integrated solution because this quantity is 
a direct function of the physical dimensions of the servo- 
motor. The second parameter that will be used is the 
reciprocal of the damping ratio. This quantity is herein 
designated the inertia index ,?Z The new term is employed 
in this,paper because the quantity is later applied to equations 
in which the term “damping ratio” would have no meaning. 

Equation (19) expressed in terms of the parameters T and 
E may be written 

y$+T$++ (26) 

The value of E may be obtained directly from the dimen- 
sions of the servomotor, the load mass, and the initial error. 
Equating like coefficients in equations (19) and (26) gives 

E=; (P,-P,)A, J 
MS 

(27) 

With the substitution of equation (8) in equation (27) the 
general expression for E is obtained: 

(259 

With the same procedure followed in the case of the rotary 
servomotor, the inertia index is 

(29) 

The integrated forms of equation (26) are as follows: 
When E=l. 

(30) ;=1+, -G) [1+(G) t] 
When E<l, 

-(A-& a=+- 
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E<I 
‘)c’ 

7 

Straight-line servomotor 
Time, SK 

Rotary servomotok 

FIGURE 5.-Summary of linear relations for transient response of hydraulic servomotors with mechanical feedback. 

When E>l, 

{co, [(‘F) t-tan-+-]] (32) 

Equations (30), (31), and (32) apply specifically to the 
acceleration phase of the transient. In this analysis the 
deceleration phase is approximated by an exponential decay 
as defined by equation (25). There is, however, very little 

difference between the values of i as defined by equation (30) 

,in evaluating g=F(t) in the deceleration phase of the 

transient as well as the acceleration phase. When E>l, 
equation (32), which applies to the acceleration phase, deviates 
markedly from a first-order response in the deceleration 
phase. Equation (32) may therefore be applied only up to 
the inflection point. The time at which the inflection point 
occurs as evaluated from equation (32) is 

t= TE2 
l 24Fx 

(tan-’ J7FY) (33) 

or equation (31) beyond the inflection point and as defined 
by the integrated form of equation (25). When Es 1, the Equation (32) is therefore solved for values of i for values 

corresponding equations (30) or (31) may therefore be applied of t between zero and tl. 

261100&54-2 
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Values of g for values of t>tl are obtained by integrating 

equation (25) with the initial conditions 

x=x1 
which yield 

The relations defined in this section are summarized in 
figure 5 along with the expressions for T and E. 

Experimental responses--As derived in this analysis, 
the transient response of the servomotor is characterized 
dynamically by an acceleration phase that is approximately 
described by a linear second-order differential equation and 
a deceleration phase that is approximately described by a 
linear first-order differential equation. The coefficients of 
the equations for both phases are determined by the two 
parameters T and E. The parameter T is a function of the 
motor dimensions and the pressure difference across the 
motor. The parameter E is a function of the motor dimen- 
sions, the load mass (or moment of inertia), and the m.agni- 
tude of the input step. Figure 6 shows the characteristic 
agreement between calculated and measured responses in 
a series of runs in which the factors that determine the 
parameters T and E have been varied. The data shown 
were obtained on a rotary servomotor. The servomo tor 
and the experimental procedure are described in appendix A. 

In figure 6(a) is shown the agreement between calculated 
and measured responses at various pressure differences 
across the motor. This set of runs was made at a fixed step 
magnitude and a fixed load moment of inertia. Figure 6 (b) 
shows the agreement obtained in a series of runs in which the 
magnitude of the step was varied while pressure difference 
and load moment of inertia were held const,ant. Figure 
6(c) shows the agreement obtained in a series of runs made 
at constant pressure difference and step magnit,ude in which 
the load moment of inertia was varied. 

As can be seen in figure 6, the calculated responses have 
provided a close approximation of the actual responses over 
a ver.y wide range of conditions. It may be of particular 
interest to note that the effect of the magnitude of the input 
step predicted by the approximat,ing equations is evident in 
the measured responses. 

DETERMINATION OF PEAK CYLINDER PRESSURE DURING TRANSIENT 
RESPONSE UNDER AN INERTIA LOAD 

It has been indicated in the previous section that the 
pressure difference across the piston during the deceleration 
phase does not cause the motor response to deviate signifi- 
cantly from a response characterized by an exponential 
decay. The linear equation (eq. (25)) that is therefore 
adequate to describe the deceleration phase of the position 
response neglects the variation in deceleration rate and 
cannot be used to obtain an indication of the peak cylinder 
pressure during the transient. In the analysis that follows 

0 .I .2 
Time, t, sec3 

.5 

(a) Effect of pressure differential. Step input, 30’; moment of inertia 
of load, 12.35 pound inches per second per second. 

(b) Effect of magnitude of step. Moment of inertia of load, 12.35 
pound iuches per second per second; pressure differential, 250 
pounds per square inch. 

(c) Effect of load inertia. Step input, 20”; pressure differential, 250 
pounds per square inch. 

FIGURE B.-Responses of hydraulic servomotor to step input under 
inertia load. Rotary servomotor. 

a method will be developed by which an equation similar to 
equation (16) can be utilized by purely analytical means to 
determine the peak cylinder pressure that occurs in the 
deceleration phase. 

Initial assumptions.-In the construction of high-spee& 
high-output hydraulic servomotors, it is usual to employ 
high supply-pressure differences across the motor. In such 
instances, the drain pressure P, is, relative to the supply 
pressure P,, close to absolute zero. Under this condition, a 
scverc deceleration, resulting from a heavy inertia load, 
which causes the downstream pressure Pz to rise above P,, 
will drive the upstream pressure P, to it,s limit at essentially 
absolute zero. In the analysis that follows this condition is 
assumed to hold. The characteristic pressure variation 
during such a transient is presented in figure 7. 

As shown in figure 7, the pressure transient is divided into 
three phases. In phases I and III the two pressure curves 
(P,=F,(t) and P,=F,(t)) are mirror im.ages. In phase II, 
P, is considered constant at absolute zero. The calculation 
of the maxim-urn value of P, in phase II is based on the deter- 
mination of the m.aximum value of deceleration. In order 
to evaluate the maximum deceleration, it will be necessary 
to determine the output position and velocity at the begin- 
ning of phase II. The symbols to be used in defining the 
initial conditions for each of the three phases are shown on 
the upper curve of figure 7. 

Determination of initial conditions for phase IL---Up to 
the inflection point, phase I is identical with the acceleration 
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FIGURE 7.-Characteristic pressure variations during transient response 
of hydraulic servomotor with mechanical feedback. Step input 
and inertia load (upstream cylinder pressure limited at absolute 
zero). 

phase previously treated. It is an assumption that Lhc 
transients that result in high decelerating pressures will bc 
of the type in which the inertia index E is large; therefore, only 
the solution to equation (26) for E>l need be considered. 
Equation (32) therefore describes the function s=F(t) up 
to the inflection point. As defined in figure 7, phase I 
extends beyond the inflect,ion point. The coordinates of 
the junction of phases I and II are 

x=x2 

t=tz 

At this point,.by definition, 

P,gP,=O 

P,=P, 

APO= AP,,,=P, 

At any point in the transient the piston velocity is related 
to the flow through the valves by equation (16). Thus, at 

the junction of phases I and II 

(35) 

From equation (8) the following relation may be written: 

(36) 

Substituting equation (36) in equation (35) yields 

&=1/z (S-4 
T (37) 

From equation (37) it is seen that the velocity at the 
junction of phases I and II is the velocity corresponding to 
the inertialess case multiplied by 4. At the inflection 
point the velocity corresponds exactly to the inertialess case. 
Thus, 

s-x, kI=- 
T 

Based on the consideration that 

(S-x,)>(S-x2) 

the following approximation is macle: 

Hence, 
(S-x,) E!Jz (S-x.2) 

S,zk* 

From this the conclusion is drawn that the piston moves 
from the inflection point to x2 with substantially the velocity 
at the inflection point. 

The expression for the term k1 can be founcl by clifferen- 
tiating equation (32) and setting t=t,, where tl is given by 
equation (33). This yields 

( 
tan-’ JE?;I _ 

2Se 1/m > 
$J2=L1= 

ET (38) 

The term x2 is determined by substituting the value of .& 
(as determined by eq. (38) in eq. (37)). 

Differential equation for phase II of response.-As shown 
in figure 7, the following relations exist in phase II: 

P1=0 

APP=-P2 

APos d= Pz 

The pressure drop across the piston is related to the 
acceleration by the following expression: 

-... 
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From the condition specified above, 

The equation of flow through the valve ports is 

A,k=(CRWd=) (S-x) 

Squaring and rearranging terms give 

(3% 

From equation (28), 

2s AP3 
p= fJZR2 WZM 

Hence, equation (39) may be written in terms of the 
inertia index 

(40) 

Determination of maximum value of deceleration.-Differ- 
entiating equation (40) and setting %‘=O yield 

z (S-x) + (k)“=O (41) 

Eliminating 2 between equation (40) and equation (41) gives 

2s (k)” 
Jpr (s---(d2=0 

from which 

(4 2) 

Substituting equation (42) in equation (40) yields 

(43) 

The value of 5 at x=x, is found by integrating equation 
(40). This integration is shown in appendix B. By insert- 
ing this value of k in equation (43), the value of f,, is ob- 
tained. Based on the consideration that PI equals zero, the 
relation between the maximum downstream cylinder pres- 
sure and the maximum value of the deceleration is 

P 2, max=- A” Lzm, 
P 

It is further shown in appendix B that the ratio Pz,,JPs 
can be expressed as a function solely of the inertia index. 
This relation is given below: 

P 2 maz E2ezF@J A=- 
PS 14.77 (45) 

where 

It is shown in appendix B that equation (4%) has real values 
for all values of E>2.38. 

Comparison of experimental and analytical values of 
peak cylinder pressure.-Equation (45) is plotted in figure 
8 for values of E from 2.38 to 6.5. Also shown in the figure 
are experimental values obtained on the rotary servomotor 
described in appendix A. The experimental technique used 
to obtain the data is also described in appendix A. It can 
be noted that the experimental values are slightly lower than 
the analytical curve at low values of E and are in close agree- 
ment with the curve at higher values of E. The value of E 

‘equal to 5.7, which is the highest experimental value shown, 
was the highest value that was practicably obtainable with 
the test equipment. In general, values of E in excess of 6 
represent very heavy inertia loads and large step magnitudes. 

Effect of high decelerating cylinder pressure on transient 
response.-In the derivation of the equations that describe 

I I I I 
0 Measured values 

- Analytical ielation 

1 where K=& 

Inertia index, E 

FIGURE S.-Ratio of peak transient cylinder pressure to supply pressure 
as function of inertia index. Hydraulic servomotor with mechani- 
cal feedback. 
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the transient response of the servomotor, it was shown that 
the deceleration phase of the transient response could be 
approximated by an exponential decay, in which case the 
variations in the cylinder pressures are neglected. This 
method of approximation is outlined in figure 5. For 
transients in which the upstream cylinder pressure is driven 
to absolute zero, the relations that have been derived for the 
determination of the peak decelerating cylinder pressure can 

‘~~ be used- for- a more precise’.-determination -of the transient 
response than is afforded by the method of figure 5. The 
application of these relations to the transient response is 
presented in appendix B and is outlined in figure 9. A 
comparison of the method of figure 5 and the method of 
figure 9 with an experimental response is shown in figure 
10. The agreement between the measured response and the 
response calculated by the method of figure 9 is extremely 
close. The value of the inertia index in this response was 
4.49; hence, from ‘figure 8, the ratio P2.,,,JPs equals 1.75. 
Even with this high decelerating pressure the method of 
figure 5 provides a fair approximation of the response. The 
calculations involved in the application of the method 
outlined in figure 9 are many tunes longer than those required 
with the method outlined in figure 5. For this reason the 
met,hod of figure 9 should be applied only when the need for 
increased accuracy justifies the longer calculation. 

FIGURE 9.-Analytical relations for approximating transient response of 
hydraulic servomotor with mechanical feedback. Step input and 
inertia load (upstream cylinder pressure limited at absolute zero). 

0 0 ‘I ‘2 ‘I ‘2 ‘3 ‘3 
Time, 1, set Time, 1, set 

FIGURE 9.-Analytical relations for approximating transient response of 
hydraulic servomotor with mechanical feedback. Step input and 
inertia load (upstream cylinder pressure limited at absolute zero). 

RESPONSE TO A SINUSOIDAL INPUT 

The analysis of the frequency response at no load yields an 
important parameter used in the analysis of the response 
under an inertia load. For this reason, both the no-load and 
the inertia-load cases are treated. 

NO-LOADRESPONSE 

Basic character of response.-The basic character of the 
zero mass response is defined by the linear proportionality 

*I- .8 
-- 
f 6 
e 
5 a .4 
f 
0 

.2 

I +Jv- I 
0 .I .2 .3 .4 .5 .6 

Time, t, set 

FIGURE IO.-Comparison of method of figures 5 and 9 with measured 
response. Transient response of hydraulic servomotor with 
mechanical feedback. Rotary servomotor; step input, 30’; moment 
of inertia of load, 41.75 pound inches per second per second; pressure 
differential, 250 pounds per square inch. Inertia index E, 4.49; 
no-load time constant T. 0.0617 second. 

between the output velocity and the pilot-valve opening (or 
position error). The proportionality constant between the 
velocity and the error is the no-load time constant T. For a 
sinusoidally varying input the instantaneous output velocity 
is then 

k= S’ cos (wL)----z 
T (46) 

The solution of equation (46) is 

g/= ,&” (wt+c) (47) 

Substituting equation (47) and its derivative in equation (46) 
gives 

Aeta=& 
l+zwT (48) 

The term Ae(p is a vector quantity having an amplitude 
A and a phase angle cp. From equation (48), 

A= (49) 

and 
cp= - tan-‘Tw (59) 

For large values of w - 

Hence, the asymptote of the response is given by 

A+ (5 1) 

The intersection of the asymptotic line and A=1 yields the 
break frequency and orients the asymptote 

1 w1=- T (52) 
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(a) Amplitude attenuation. 
(b) Phase shift. 

FIGURE 11 .-Frequency response of hydraulic servomotor under 
negligible inertia load. Rotary servomotor; torque-inertia ratio, 
3,500,OOO radians per second per second; supply pressure, 1000 
pounds per square inch. 

Experimental responses-Figure 11 shows the correlation 
between the analytical first-order frequency response and the 
measured frequency response of a servomotor at no load. 
The servomotor used was the rotary motor described in 
appendix A. The techniques of instrumentation and experi- 
ment are also described in appendix A. The cIose agreement 
between the calculated response and the measured response 
for the wide range of input amplitudes used characterizes 
the basic linearity of the response of the scrvomotor at no 
load. 

After both sides of equation (55) are divided by the out- 
put amplitude at zero frequency, the equation relating the 
amplitude ratio and the frequency is 

RESPONSE UNDER AN INERTIA LOAD 

It has been shown that under an inertia load the transient 
response of the servomotor is nonlinear. In the transient 
response the basic character of the response varied with time. 
It is therefore to be expected that in the frequency response 
the basic character of the response will vary with frequency. 

In the log-log plot of amplitude ratio against frequency 
(fig. 12) an asymptote may therefore be considered to exist 
having a slope of 2 decades per decade. The break frequency 
of the high-frequency asymptote is found from equation (56) 
by setting A= 1: 

wz= J @ ‘s--P&% 
S’M 

Low-frequency amplitude attenuation.-At low frequencies 
the forces that act on the mass of the system are small and 
hence the response in this frequency range will be similar to 
the no-load response. The attenuation may therefore be 
described by equations (49) and (51). In the log-log plot of 
amplitude ratio against frequency (fig. 12), an asymptote 
may then be considered to exist with unity slope and a 
break frequency of l/T. The break frequency of the low- 
frequency asymptote expressed in cycles per second is 

The expression for the value of w2 may be made inde- 
pendent of the type of servomotor by relating w2 to the no- 
load time constant and the dimensionless quantity previously 
defined as the inertia index. The inertia index is defined 
for the frequency response by replacing the term magnitude 
of step S with the term amplitude of output sine wave at 
zero frequency S’. 

Rewriting equation (28) and introducing the symbol S’ 
in place of S give 

(53) ( 
E-,=45 CR WdMS’ 

A 312 D 

High-frequency amplitude attenuation.-At no load the 
piston velocity is at all times proportional to the valve open- 
ing. Therefore, in the response to a sinusoidal input at no 
load the pilot-valve area is zero at the ends of the output 
travel (the velocity being zero). Under an inertia load the 
piston velocity is not proportional to the pilot-valve opening, 
and hence in the response to a sinusoidal input the valve area 
is not necessarily zero at the ends of the output travel. If 
at a given frequency the response of the servomotor is as- 
sumed to be essentially sinusoidal, the maximum accelera- 
tion can be considered to occur at the limits of the output 
travel and hence when the piston velocity is zero. Under 
the condition of negligible mass of the hydraulic fluid, the 
pressure difference across the piston at any instant, when the 
piston velocity is zero and the pilot-valve area is greater than 
zero, is the pressure difference across the servomotor. Above 
some frequency the system may then be approximated by a 
linear system wherein the pressure difference across the pis- 
ton varies sinusoidally with an amplitude of (Pa-P,) and 
with the frequency of the input. On the basis of this approx- 
imation the acceleration of the piston is 

~= (P~--P,)A, sin wt 
M (54) 

Integrating equation (54), introducing the condition that 
x varies about zero, and neglecting the change in sign yield 

x= (PS-Pd)AD sin wt 
Mw2 (55) 

(56) 

(57) 
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,,T*-Approximations of asymptotes to octuol ,,T*-Approximations of asymptotes to octuol 
ottenuations ottenuations 

~-132~ El/decade 

Log,0 frequency, cps 

Straight-line servomotor Rotary servomotor 

fl = $ 

I fz = - 7TTE 

2 
f3=,2 TX) 

FIGURE 12.-Summary of linear relatibns for frequency response of 
hydraulic servomotors with mechanical feedback. 

From equation (8) 

T= fiAp 
CRWJPs-PP, 

Combining these two relations yields 

(58) 

Substituting equation (58) in equation (57) gives 

(59) 

The break frequency of the high-frequency asymptote ex- 
pressed in cycles per second is 

The amplitude ratio may also be expressed in terms of 
T and E’. Substituting equation (58) in equation (56) gives 

(61) 

Cross-over frequency.-The intersection of the low- and 
high-frequency asymptotes defines the limit of the low- 
frequency band and the start of the high-frequency band. 
For fi>fi this intersection is found by equating the am- 
plitude ratios as defined by equations (51) and (61): 

from which 

03=&1)2 (62) - 
The cross-over frequency expressed in cycles per second is 

(63) 

For ji<ji the cross-over frequency occurs atfi; hence 

f3=fz 

Correlation of frequency response and transient 
response.-It has been shown that the derivedattenuation 
asymptotes of the frequency response are functions of the 
same parameters that govern the derived characteristics of 
the transient rcsponsc. It has been shown further that the 
‘analytical relation that governs the characteristics in the 
low-frequency band is the same as the analytical relation 
that governs the characteristics of the deceleration phase of 
the transient response (fig. 5). It can also be shown that 
the linear system used to approximate the acceleration phase 
of the transient response attenuates along the same asymp- 
tote as has been derived for the high-frequency band. 

Equation (26) expresses the dynamic equilibrium in the 
acceleration phase of the response to a step input. Equa- 
tion (26) rewritten for a sinusoidal input is 

T’(E’)’ g+Tk+z=X,eiwt 
4 

The solution to equation (64) is 

LG~-Aei(wt+p) (65) 

Substituting equation (65) and its derivatives in equation 
(64) yields 

Aei”= 1 
1 -“‘T~E’~l+i,T 

The term Aei” is a vector quantity having an amplitude 
- A and a phase angle cp: 

(6i) 

(68) 
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At high frequencies the relation of equation (67) 
approaches the asymptote 

(69) 

The phase shift in the low-frequency band may therefore 
be represented by a straight line on the semilog ,plot having 
a slope of 1.15 radians per decade (66”/decade) and passing 

Equation (69) is identical with equation (61). It is there- 
fore shown that the linear system described by equation (64) 
attenuates along the same asymptote as the linear system 
described by equation (26).’ 

Phase shift--The correlation of the amplitude attenuation 
with a linear first-order system in the low-frequency band 
and with a linear second-order system in the high-frequency 
band provides a basis for the description of the phase shift 
of the servomotor. The phase shift of linear systems can 
be represented by straight lines on the coordinates of phase 
shift against log frequency. The characteristic slope of the 

dv straight line for a first-order system. is the slope dw of the 

phase-shift-frecprency relation at (p=45”. The character- 
istic slope of the straight line for a second-order system is 

the slope 2 of the phase-shift-frequency relation at (p=90”. 

The orientation of these lines and the relations for the slopes 
are shown in figure 12. The derivation of the relations 
shown in figure 12 is presented in the following paragraphs. 

Based on the correlation of the low-frequency-amplitude 
attenuation with the no-load response, the phase shift is, 
from equation (50), 

cp= -tan-* Tu 

and, from equation (52), the break frequency in the low- 
frequency band is 

1 
01=- T 

Substituting equation (52) in equation (50) yields 

cp,=-tan-’ l=-45” 

Differentiating equation (50) with respect to w and setting 
dP w=+ yield the slope z at ~~=45”: 

The straight line on the semilog plot may be written 

(o=K log,, W (71) 

Differentiating equation (71) with respect to w and solving 
for the constant K give 

(72) 

Substituting the values of 2 and w at (p=45’ yields the 

characteristic slope of the first-order system on the semilog 
plot 

K,=1.15 (73) 

through the point u=$ (p=45”. 

Based on the correlation of ‘the amplitude attenuation in 
the high-frequency band with I the acceleration phase of the 
response to a step input, the phase shift in the high-frequency 
band is characterized by! the relation expressed in equation 

(68). The characteristic slope 2 of equation (68) is found 

by differentiating equation (68) and setting w equal to & 

(0=90”): I  

dt,c T(E’)’ -=- 
dw 2 (74) 

After the substitution of equation (74) and u=&, in 

equation (72), the characteristic slope of the second-order 
system on the semilog plot is 

K,=2.3E’ (75) 

6610 20 
Frequency, cps 

(a) Effect of load inertia J. Rotary servomotor; amplitude at zero 
frequency, loo; pressure differential, 125 pounds per square inch. 

FIGURE 13.-Frequency responses of hydraulic servomotors under 
inertia load. 
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(b) Effect, of amplitude tl’. Rotary servomotor; moment of inertia 
of load, 5 pound inches per second per second; pressure differential, 
125 pounds per square inch. 

FIGURE l3.---Continued. Frequency responses of hydraulic servo- 
motors under inertia load. 

It is a fundamental prcccpt that in representing the rc- 
sponse of the servomotor in two frequency bands tdlo rela- 
tions used to approximate the response shall yield equal am- 
plitude ratios and equal phase shifts at the cross-over frc- 
quency. The cross-over frequency has already been defined 
for equal amplitude ratios. The phase-shift line in the low- 
frequency band has been previously oriented. The phase- 
shift line in the high-frequency band therefore intersects the 
low-frequency phase-shift line at the cross-over frequency 
and has a slope of 2.3E’ radians per decade (132O E’ decade). 
It should be noted that the low-frequency phase-shift line is 
limited at 90” and the high-frequency-band phase-shift line 
is limited at 180’. In figure 12 the cross-over frequency is 
shown to occur after the low-frequency phase-shift line has 
reached the 90” limit. The orientation of the high-frequency 
phase-shift line for other relative locations of the cross-over 
frequency is shown in conjunction with the experimental 
responses. 

(c) Effect, of pressllre differential (Pg-Pd). Straight-line servomotor; 
load mass, 1.08 pounds per second per secoltd per inch; amplitude al 
zero frequency, 0.65 inch. 

(d) Effect of amplitude 8’. Straight-line servomotor; load mass, 
1.08 pounds per second per second per inch; pressure differential, 
28.5 pounds per square inch. 

FIGURE 13.-Concluded. Frequency responses of hydraulic servo- 
motors under inertia load. 

presented for both the rotary and straight-line Lypes of 
motor. 

In figure 13(a) is shown the effect of load inertia on the 
amplitude attenuation and on the phase shift of a rotary 
servomotor. An increase in load inertia results in a reduc- 
tion in the frequency at which the attenuation becomes 
rapid. In the analytical expression developed in this paper 
(summarized in fig. 12) this effect is evident in the increased 
value of E’ with increasing load inertia and the consequent 
reduction in the values of ji and j3. 

Experimental responses.-Figure 13 shows the experi- The experimental and calculated frequency responses of 
mentally and analytically determined effect on the frequency the same rotary servomotor at various input amplitudes are 
response of the hydraulic servomotor of the parameters: shown in figure 13(b). The amplitudes given in the figure 
load inertia, input amplitude, and pressure. Examples are correspond to the term 0’ and consequently are half the total 
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output stroke at zero frequency. In the case of this particular 
servomotor, this a.mplitude corresponds exactly to the ampli- 
tude of the input sine wave. The increase in input ampli- 
tude’is seen to have an effect similar to that of increasing 
load inertia. This effect is made evident in the analysis by 
equation (57). 

The agreement between experimental and analytical 
responses for a straight-line servomotor is shown in figures 
13(c) and (d). Phase shift could not be measured in this 
installation. Figure 13(c) shows the effect of the pressure 
difference across the motor. Increased pressure results in 
increasing the frequency at which the motor begins to 
attentuate rapidly. In the analytical expressions, the 
increase in pressure results in a decrease in T and a conse- 
quent increase in fi, .f2, and .f3. The inertia index E’ is 
independent of the pressure difference and therefore the 
effect of pressure on.fi ancl.f, is not as great as the effect on.fi. 
The effect of amplitude shown in figure 13(d) is similar to 
that already shown in the case of the rotary servomotor in 
figure 13(b). 

Jn both amplitude attentuation and phase shift t.he agree- 
ment between the measured response and the anaIytica1 
straight-line approximation is, in general, well within the 
experimental accuracy. The slopes of the attenuation and 
phase data clearly demonstrate the first-order characteristics 
of the response in the low-frequency band and the second- 
order characteristics of the response in the high-frequency 
band. The transition from. first-order to second-order 
characteristics at the calculated cross-over frequency is 
quite pronounced. The values of T and E’ shown in figure 
13 are based on a value of Cof 95.1, on the dimensions of the 
servomotors as given in appendix A, and on the conditions 
stated on each plot. In figures 13(c) and (d), the pressure 
differences given are not the actual pressure differences 
across the motor but are reduced values based on a pressure 
necessary to overcome friction in t,hc loading carriage. This 

reduction is discussed in appendix A. In all the other calcu- 
lated results presented in this paper, no correction whatever 
was applied to the measured pressure difference across the 
motor. 

CONCLUDING REMARKS 

Application to analysis-The dynamic relations presented 
in this paper can be directly applied to the analysis of a 
given servomotor. The dimensions of the servomotor and 
the operating pressure difference across the motor determine 
the no-load time constant T. The inertia index E is then 
determined from the load inertia and the magnitude OI 
amplitude of the input disturbance. With these two con- 
stant,s determined, the relations for the transient response, 
the peak cyclinder pressure in the transient, and the 
frequency response can be applied. 

The validity of the analysis has been demonstrated by 
means of recorded transient and frequency responses ob- 
tained on two servomotors. In all cases the calculated 
responses are in close agreement with the measured responses. 

Application to design.-The optimum combination of 
servomotor dimensions to meet specific dgnamic require- 
m.ents involves further discussion of physical considerations 
that are beyond the scope of this paper. It is nevertheless 
apparent that, based on this analysis, procedures can be 
established for the rational design of hydraulic servomotors. 
In general, the procedures will involve the inversion of the 
analytical expressions in order that the dimensional param- 
eters (such as A,, R, and W) may be expressed in terms of 
the analytical parameters T and E, and the establishment of 
means of specifying the desired response in terms of the 
analytical parameters. The application of this analysis to 
the design of servomotors is given in reference 2. 

LEWIS FLIGHT PROPULSION LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

CI,EVEI,AND, Omo, May 19, 1952. 

APPENDIX A . 
APPARATUS AND EXPERIMENTAL PROCEDURES 

SERVOMOTOR DIMENSIONS 

The two servomotors used in this mvestigatiou had the 
following dimensions: 
Straighbline servomotor: 

Pistonarea, A,, sclin .__. -__-- ___...__.___..____ -- ____ 4. 4 
Ratio of valve travel to piston travel at fixed inputs, R, in./in. 0. 1062 
Width of valve port, lJ7, in .____.___ -- _______ --__-- ____ 1. 33 

Rotary servomotor: 
Width of vane, h, in .___________________ -___--__--_--- 2.000 
Inner vane radius, Li, in .____ - _____ -- _______ --__--_--_ 0. i60 
Outer vane radius, L2, in .___ -- ______ - ______ ---__--_--- 2. 267 
Ratio of valve travel to vane shaft rotation at fised input, r, 

in./radianss- .______ - ______ --__--__-___---__--_--- 0.3125 
Width of valve port, TV, in .._ --__-__.--_-- -____.__ __ 0. 2225 

TRANSIENT RESPONSE 

Position recorder.-Input and output shaft positions were 
recorded by means of direct-writing oscillographs. The 

oscillographs wore driven by amplifiers. The amplifiers, in 
turn, received their signal from potentiometers coupled to the 
servomotor shafts. The frequency response of the amplifier- 
oscillograph combination was essentially flat over a frequency 
range from 0 to 80 cycles per second. 

Pressure recorder.-Cylinder pressures were also recorded 
by means of direct-writing oscillographs. The pressure 
pickups used were of the strain-gage type. The signal 
developed across the strain-gage bridge was amplified by 
suitable amplifiers which, in turn, drove the oscillographs. 
The frequency response of this amplifier-oscillograph com- 
bination was essentially flat over a frequency range from 0 to 
80 cycles per second. The natural frequency of the pressure 
pickup was 1000 cycles per second. 
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Step-input apparatus.-In order to introduce a step change 

in a mechanical system such as the hydraulic servomotor, it is 
necessary to accelerate and decelerate a finite mass (such as 
the input shaft) at very high rates. The time constant of 
the servomotor to be tested was about 0.03 second. The very 
high accelerations that would be required of the input 
mechanism for the transient to be negligible did not appear 
to be reasonably attainable in this case. It was therefore 
decided to use a’step input that is obtained by restraining the 
output. This procedure should be made clear by figure 14. 

As can be seen in t.he photograph, the output shaft is held 

in position by a wire suitably anchored. The wire used was 
music wire stressed to approximately 150,000 pounds per 
square inch. With the output so restrained, the input lever 
is advanced for the desired magnitude of step. The tran- 
sient is then triggered by cutting the highly stressed wire. 
In the transient runs, the output motion was recorded 
directly. The input motion, which has no meaning in this 
case, was not recorded. The start of the transient was 
recorded by placing the restraining wire in the signal circuit 
of one recorder. A change occurred in the signal voltage 
when the wire was parted. 

F~cunn I4.-Rotary hydraulic servoirlotor instrumented for recording 
transient rrsponse to a step input. 

FIGURE 15.-Rotary hydraulic servomotor instrumented for recording 
rcsponsc to a sinusoidally varying input. 

FIGURE li.-Instrumentation for determining frequency-response 
characteristics of hydraulic servomotor. 

FIGURE 16.-Straight-line hydraulic servomotor instrumented for 
recording response to a sinusoidally varying input. 
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The moment of inertia of the load was varied by bolting 
additional weights to the ends of the bar that was fastened 
to the output shaft of the servomotor. For the no-load runs 
a light-weight arm was used in place of the bar that is shown 
in figure 14. 

FREQUENCY-RESPONSE APPARATUS 

Drive apparatus.-The rotary-servomotor setup for 
frequency-response measurement is shown in figure 15. In the 
photograph of figure 15 the servomotor input shaft is on the 
right-hand side. A rack and gear assembly is coupled to the 
input shaft. The rack is connected to a variable-stroke 
crank that is driven by a variable-speed transmission. The 
drive had a range from 0.1 to 20 cycles per second. 

The straight-line-servomotor setup for frequency-response 
measurements is shown in figure 16. The input lever is 
linked directly to a variable-speed, variable-st,roke drive. 
The output potentiometer is coupled to the output shaft by 
means of a rack and pinion assembly. The servomotor is 
loaded by means of weights that are bolted to a sliding car- 
riage. Input motion was not measured in this apparatus. 
The variable-speed drive had a range from 0.1 to 11 cycles 
per second. 

Output and phase-angle measurement.-Phase angle was 
measured only in the case of the rotary servomotor. The 
circuit diagram showing the method of connecting t#ht? po- 
tentiometers to the recorder amplifiers is shown in figure 17. 
By means of the arrangement shown, the output motioil 
and the error between the output and input shaft positiou 
are recorded. In the diagram the potentiometers marked 
input and output are the two that are visible in figure 15 and 
are coupled directly to the input and output shaft, respec- 
tively. The balance potentiometer is uncouplecl. 

The output attenuation ratio is obtained directly from the 
oscillograph traces. The phase angle is obtained by means 
of the graphical construction shown in figure 18. The input 
amplitude is laid out to an arbitrary scale. With the USC 
of this scale, the output-amplitude rat,io is swung as an arc 
from the starting point of t#hc input vector. The t~ror- 
amplitude ratio, referred to amplitude at infinite frequency 
(obtained by locking output), is swung as an arc from the 
opposite end of the input vector. The trianglr thus formed 
yields the phase angle. 

The particular advantage. of this procedure lies in the rela- 
tively greater accuracy with which the amplitude of a wave 
can be measured compared with the d&rmination of thr 
exact point in the cycle at which the maximum height of the 
wave occurs. 

Friction determination.-In the frequency-response runs 
made with the straight-line servomotor, the limitations im- 
posed by the sinusoidal drive and pumping equipment re- 
stricted the range of frequencies to a maximum of I 1 cycles 

FIGURE 18.-Diagram for determination of phase angle from frequency- 
response data. 

per second. In order to obtain a significant range of ampli- 
tude ratios below 11 cycles, it was necessary to make these 
runs at low pressure differences across the motor. The 
pressure necessary to overcome friction in the servomotor 
was approximately 2 pounds per square inch and therefore 
could be neglected in the calculations. The pressure nec- 
essary to overcome friction in the loading carriage was as 
high as 22.5 pounds per square inch at maximum load. This 
pressure was defined as the pressure necessary to maintain a 
steady oscillation with a given load on the carriage. The 
pressure was found to be substantially independent of the 
frequency in the range of frequency up to 11 cycles per second. 
The calculated asymptotes shown in figures 13(c) and (d) were 
made with the friction pressure subtracted from the mcas- 
ured pressure difference across the motor. 

The procedure previously outlined applies only to figures 
13(c) and (d). In all the other runs shown, no correction 
whatever was applied to the measured pressure difference 
across the motor. 
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APPENDIX B 
DERIVATION OF EQUATIONS FOR TRANSIENT RESPONSE IN WHICH UPSTREAM CYLINDER PRESSURE IS LIMITED AT 

ABSOLUTE ZERO 

In the following sections the formal mathematical opera- 
t.ions employed in the derivations of the expressions for the 
peak cylinder pmssu~e and for the position response are 

-presented.. .~ . ..~. __ 
PEAK CYLINDER PRESSURE 

Integration of differential equation for limited pressure 
phase (eq. (40)).-The differential equation for the phase of 
the transient in which the upstream cylinder pressure is 
limited at absolute zero is, from equation (40), 

2s p2 -gh 2+2=o ( > (Bl) 

The order of the equation may be reduced by means of the 
following general relation : 

., d(k) rzx . rz(k) 
r=7t- & =xdJ: ( > @2) 

With the substitution of equation (B2) in equation (RI), 
the reduced equation is obtained: 

2s E” s&x z+&&o 
( > 

Rearranging terms yields 

lnttlgrating clacll t,crrn gives 

2s 1 _ .- E2 (~~~x)+ln .i:=n 

from which 

C 
U-E 1 

k=e m (S-1) 1 034) 

With use made of that syml~ols tltbfncd in figure 7, the initial 
conditions arc 

t=t* 
x=x2 
It:=& 

Introducing these values in equation (B3) yields 

D=$$ &+ln jr, @W 

Relation between ratio of peak pressure to supply pressure 
and inertia index.-From equation (43), 

P *& (Et)2 u36) 

From equation (42) the value of x when 2 is at the maximum 
value is given by the following relation: 

8-x 2E 
m E2 (B7) 

With the substitution of equation (B7) into equation (B4), 
an expression is obtained for the-pistdn velocity when the 
deceleration is at the maximum value: 

gmze(D-” 

Substituting equation (B8) in equation (B6) yields 

. . E2 ezD 
‘~2 

=- - 
2S e2 (BQ) 

Based on the consideration tbat PI equals zero, the relation 
between the downstream cylinder pressure Ps and the de- 
celeration is 

A,P2= MZ @lo) 

Combining equations (B9) and (BlO) and dividing by P, yield 

Based on the consideration that PI and P, are zero, the 
following relation is derived from equation (27) : 

Substituting equat,ion (B12) in the right-hand side of equa- 
tion (BlII gives 

P 2v nLm E”T2e2” 
PS 

=--..- 
SS2e2 (B13) 

Inserting the numerical value of e2 gives 

(B14) 

The exponent D may be csprcssc~l in terms of the relations 
that have been derived for x2 ant1 &. From equation (37), 

Tk2 s-x2=- 
l/z 

and from equation (38), 

0315) 

L2= 
2se-(P;“.) 

TK sin (tan-’ K) (B16) 

where K=1/E2- 1. 

By use of the trigonometric identity 

sin a =dGa 

it can be shown that 

sin (tan-’ K) =------ 
J& 
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Furthermore, 
Jl +K2=E 

Hence, 

sin (tan-l K)=$ 

and equation (B16) may be written 

k2= 
2se~(FEgLc) 

TE 

Substituting equation (B17) in equation (B15) yields 

(B 

.7) 

8) 

Substituting equations (Bl7) and (Bl8) in equation (B5) 
gives 

&e( %F) tan-’ K 
E 

--K-+ ln +F!?& (Big) 

Let 

Then 
2s 

D=F(E)+In TE 

and 
e2D- 4S2e [2F(E)1 - 

T2E2 0320 

Substituting equation (B20) in equation (Bl4) gives 

0321) 

It can be seen from figure 7 that equation (B21) will yield 
real values only if the following relation exists: 

Because 9 and $ are both functions solely of E, the value 

of E when $$=3 represents the limiting value of E for real 

P values of y. 

From equakion (B7), 

(R22) 

From equation (B18) 

Equating equations (B7) and (Bl8) gives 

( 
tan-~ @=i 

E=dze dEa-1 > 

The value of E that satisfies this relation is 2.38. 
(B24) 

Because $$ approaches unity more rapidly than 2 as E 

increases, 
P 2, as defined by equation (B2l) has real values 

PS 
for E>2.38. The validity of this proof is demonstrated 
by the evaluation of equation (B21) at E=2.38. Inserting 
this value of E in equation (B21) yields 

POSITION RESPONSE 

Determination of initial coordinates of phase II-From 
equation (37), 

(B25) 

From equation (38), 

CL -z= 2e- ~-- ( 
tan-1 JEZ--I 

7 Jc-1 
S ET @26) 

Substituting equation (B26) in equation (B25) yields 

tan-1 JIP--1 

Z=l- 
JTj e- ( JET 7 

E (B27) 

The velocity is constant from the point $ to the point 2; 

cB29) 

Integration of differential equation for phase II-The 
first step in this integration is presented in the previous 
section in which equation (Bl) is integrated to L (eq. (B4)). 
Let 

du=$ (S-X)-~ dx 

,~x=-~E du E72$ 

Making these substitutions in equation (B4) and rearrang- 

0330) 

(B31) 

The integrated equation is then 

t=(s) (luu-f+z-&+H) (B32) 

The constant H is evaluated by introducing tbc initial 
conditions 

t=tz 

x=q 
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Hence, 

where 

Determination of initial conditions for phase III (fig. 7).- 
As defined in figure 7, the coordinates of the junction of 
phases II and III are 

x=x3 

t=t3 

As further defined, the following conditions exist at t=t3: 

PI= P,gO 

P,=P, 

AP,=--P, 

AP,,=AP,,=P, 
Hence, 

AP y3=- P-5 
M 

By equation (7) 

0334) 

Substituting equation (36) yields 

l/z &=7ji (S-x,) 0335) 

From equation (B4) a second velocity-position relation is 
obtained: 

k =,(D-%3&J 
3 0336) 

Combining equations (B35) and (B36) yields 

0337) 

The constant D is evaluated by means of equation (B19) 
,and x3 is determined graphically from equation (B37). The 
coordinate t3 is evaluated by means of x3 and equation (B32). 

Equation for phase III of response.-Phase III is identical 
with the deceleration phase of figure 3. Therefore, follow- 
ing the derivation of equation (34), the equation of the 
response in phase III is 

0338) 
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